返回首页

钢板弹簧在pro/e里的装配,为什么弹簧片装配不到一起去,总是有间距,贴合不到一起去。

118 2023-07-22 15:18 admin

一、钢板弹簧在pro/e里的装配,为什么弹簧片装配不到一起去,总是有间距,贴合不到一起去。

要贴在一起, 应该是两个零件径向相切,另外两个方向都是两个平面对齐,这样安装你试试。

二、工业厂房,吊车梁和牛腿柱怎么连接!连接有什么特殊要求?

工业厂房,吊车梁和柱的牛腿的连接是‘简支’。牛腿顶面预埋钢板与吊车梁端底部的预埋铁焊接,同时,吊车梁翼缘侧边的预埋铁与上柱侧面的预埋铁焊接。两吊车梁端按规定留缝隙,焊缝有效高度和长度符合要求。规范要求:

1、焊接吊车梁的翼缘板宜用一层钢板,当采用两层钢板时,外层钢板宜沿梁通长设置,并应在设计和施工中采取措施使上翼缘两层钢板紧密接触。

2、支承夹钳或刚性料耙硬钩吊车以及类似吊车的结构,不宜采用吊车桁架和制动桁架。扩展资料:焊接吊车桁架应符合下列要求:(1) 在桁架节点处,腹杆与弦杆之间的间隙A不宜小于50MM,节点板的两侧边宜做成半径R不小于60MM的圆弧;节点板边缘与腹杆轴线的夹角Θ不应小于30。节点板与角钢弦杆的连接焊缝,起落弧点应莹少缩进5MM。竹点板与H形截面弦杆的T形对接与角接组合焊缝应子焊透,圆弧处不得有起落弧缺陷,其中重级工作制吊车桁架的圆弧处应予打磨,使之与弦杆平缓过渡。(2) 杆件的填板当用焊缝连接时,焊缝起落弧点应缩进至少5MM,重级工作制吊车桁架杆件的填板应采用高强度螺栓连接。(3)当桁架杆件为H形截面时,节点构造可采用图2的形式。

三、什么连接悬架总成与车架?

是弹簧钢板连接车架与悬架总成。

四、求几道高中物理会考有关弹簧的题目,要题目和做题步骤

认真找的 希望楼主采纳

题目:例 如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中 [ ]

A.动量守恒,机械能守恒

B.动量不守恒,机械能不守恒

C.动量守恒,机械能不守恒

D.动量不守恒,机械能守恒

【错解】以子弹、木块和弹簧为研究对象。因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。又因系统只有弹力做功,系统机械能守恒。故A正确。

【错解原因】错解原因有两个一是思维定势,一见光滑面就认为不受外力。二是规律适用条件不清。

【分析解答】以子弹、弹簧、木块为研究对象,分析受力。在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。

例 质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为x0,如图3-15所示。物块从钢板正对距离为3X0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。已知物体质量也为m时,它们恰胡念能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。

【错解】物块m从A处自由落下,则机械能守恒

设钢板初位置重力势能为0,则

之后物块与钢板一起以v0向下运动,然后返回O点,此时速度为0,运动过程中因为只有重力和弹簧弹力做功,故机械能守恒。

2m的物块仍从A处落下到钢板初位置应有相同的速度v0,与钢板一起向下运动又返回机械能也守恒。返回到O点速度不为零,设为V则:

因为m物块与2m物块在与钢板接触时,弹性势能之比

2m物块与钢板一起过O点时,弹簧弹力为0,两者有相同的加速度g。之后,钢板由于被弹簧牵制,则加速度大于g,两者分离,2m物块从此位置以v为初速竖直上抛上升距离

【错解原纤毕因】这是一道综合性很强的题。错解中由于没有考虑物块与钢板碰撞之后速度改变这一过程,而导致错误。另外在分析物块与钢板接触位置处,弹簧的弹性势能时,也有相当多的人出错,两个错误都出时,会发现无解。这样有些人就返回用两次势能相等的结果,但并未清楚相等的含义。

【分析解答】物块从3x0位置自由落下,与地球构成的系统机械能守恒。则有

v0为物块与钢板碰撞时的的速度。因为碰撞板短,内力远大于外力,钢板与物块间动量守恒。设v1为两者碰撞后共同速

mv0=2mv1 (2)

两者以vl向下运动恰返回O点,说明此位置速度为零。运动过程中机械能守恒。设接触位置弹性势能为Ep,则

同理2m物块与m物块有相同的物理过程

碰撞中动量守恒2mv0=3mv2 (4)

所不同2m与钢板碰撞返回O点速度不为零,设为v则

因为两次碰撞时间极短,弹性形变未发生变化

Ep=E’p (6)

由于2m物块与钢板过O点时弹力为零。两者加速度相同为g,之后钢板被弹簧牵制,则其加速度大于g,所以与物块分离,物块以v竖直上抛。

【评析】本题考查了机械能守恒、动量守恒、能量转化的。守恒等多个知识点。是一个多运动过程的问题。关键问题是分清楚每一个过程。建立过程的物理模型,找到相应解决问题的规律。弹簧类问题,画好位置草图至关重要。

例 如图3-18所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下落,从金属块自由下落到第一次速度为零的过程中

A.重力先做正功,后做负功

B.弹力没有做正功毁做芹

C.金属块的动能最大时,弹力与重力相平衡

D.金属块的动能为零时,弹簧的弹性势能最大。

【错解】金属块自由下落,接触弹簧后开始减速,当重力等于弹力时,金属块速度为零。所以从金属块自由下落到第一次速度为零的过程中重力一直做正功,故A错。而弹力一直做负功所以B正确。因为金属块速度为零时,重力与弹力相平衡,所以C选项错。金属块的动能为零时,弹力最大,所以形变最大,弹性势能最大。故D正确。

【错解原因】形成以上错解的原因是对运动过程认识不清。对运动性质的判断不正确。金属块做加速还是减速运动,要看合外力方向(即加速度方向)与速度方向的关系。

【分析解答】要确定金属块的动能最大位置和动能为零时的情况,就要分析它的运动全过程。为了弄清运动性质,做好受力分析。可以从图3-19看出运动过程中的情景。

从图上可以看到在弹力N<mg时,a的方向向下,v的方向向下,金属块做加速运动。当弹力N等于重力mg时,a=0加速停止,此时速度最大。所以C选项正确。弹力方向与位移方向始终反向,所以弹力没有做正功,B选项正确。重力方向始终与位移同方向,重力做正功,没有做负功,A选项错。速度为零时,恰是弹簧形变最大时,所以此时弹簧弹性势能最大,故D正确。

所以B,C,D为正确选项。

【评析】对于较为复杂的物理问题,认清物理过程,建立物情景是很重要的。做到这一点往往需画出受力图,运动草图,这是应该具有的一种解决问题的能力。分析问题可以采用分析法和综合法。一般在考试过程中分析法用的更多。如本题A,B只要审题细致就可以解决。而C,D就要用分析法。C选项中动能最大时,速率最大,速率最大就意味着它的变化率为零,即a=0,加速度为零,即合外力为零,由于合外力为mg-N,因此得mg=N,D选项中动能为零,即速率为零,单方向运动时位移最大,即弹簧形变最大,也就是弹性势能最大。本题中金属块和弹簧在一定时间和范围内做往复运动是一种简运振动。从简谐运动图象可以看出位移变化中速度的变化,以及能量的关系。

例 A、B球质量均为m,AB间用轻弹簧连接,将A球用细绳悬挂于O点,如图示,剪断细绳的瞬间,试分析AB球产生的加速度大小与方向.

分析:

开始A球与B球处于平衡状态,其受力图示见右:

剪断绳OA瞬间,A、B球均未发生位移变化,故弹簧

产生的弹力kx也不会变化,kx=mg,所以剪断绳瞬间,

B受力没发生变化,其加速度aB=0;A球受到合外力

为kx+mg,其加速度aA= =2g竖直向下.

试分析,将上题中绳与弹簧位置互换后悬挂,将绳剪断瞬间,AB球加速度的大小与方向?

(aA=g,竖直向上;aB=g,竖直向下)

例 光滑斜面倾角 =30°,斜面上放有质量m=1kg的物体,物体用劲度系数K=500N/m的弹簧与斜面连接,如图所示,当斜面以a= m/s2的加速度匀加速向右运动时,m与斜面相对静止,求弹簧的伸长?

分析:

对m进行受力分析

水平方向:设弹力为F

Fcos -Nsin =ma (1)

竖直方向:

Fsin +Ncos -mg=0 (2)

由(1)、(2)式可得

F= =6.5N

所以,弹簧伸长x=F/K= =1.3×10-2米

例 用木板托住物体m,并使得与m连接的弹簧处于原长,手持木板M向下以加速度a(a<g)做匀加速运动,求物体m与木板一起做匀加速运动的时间.

分析:

m在与M一起向下做匀加速运动过程中,m受到弹簧的弹力不断增大,板M对m的支持力不断减小,重力保持不变.m与板M分离的条件为板M对m的支持力N恰好为零,且m与M运动的加速度恰还相等(下一时刻将不再相等).

设:m与M分离经历t时间,弹簧伸长为x:

mg-kx=ma

∴x=

又因为:x= at2

∴t=

例 质量为m的物体A压在放在地面上的竖直轻弹簧B上,现用细绳跨过定滑轮将物体A与另一轻弹簧C连接,当弹簧C处在水平位置且右端位于a点时,它没有发生形变,已知弹簧B和弹簧C的劲度系数分别为k1和k2,不计定滑轮、细绳的质量和摩擦,将弹簧C的右端由a点沿水平方向拉到b点时,弹簧B刚好没有形变,求a、b两点间的距离.

答案:

解析:

弹簧C弹力

【例3】如图所示,在一粗糙水平面上有两个质量分别为m1和m2的木块1和2,中间用一原长为l、劲度系数为k的轻弹簧连结起来,木块与地面间的滑动摩擦因数为 。现用一水平力向右拉木块

例 当两木块一起匀速运动时两木块之间的距离是 ( )

A.

B.

C.

D.

【分析】本题有多种方法,最简单的做法是考虑m1做匀速运动时的受力平衡。设x表示弹簧的伸长量,立刻可得出kx= m1g.所以1、2之间的距离应为

l+x= .即选项A正确

若不去求解,只由四个选项也可以进行判断。设木块2的质量m2→0,则外力相当于直接加在弹簧右端,要使m1匀速运动,则弹簧必然伸长,因此1、2间的距离应大于l.所以选项C和D都是错误的(m2→0时,距离→l)。再设想m1→0时,则弹簧将保持原长,可见选项B也是错误的。因此已知四个选项中有一个正确的,所以只能是A。如果不知道有没有正确的选项,那只应按正常的办法求解。

如图(3)所示甲、乙两装置,所用的器材都相同,只是接法不同,其中的绳为不可伸长的轻绳,弹簧不计质量,当用剪子剪断甲图中弹簧,乙图中的绳子的瞬间,A物体是否受力平衡?

分析:要注意分析物理图景,有条件的同学可以模仿题中做法自己尝试一下.看是不是这样的情况.甲图,剪断弹簧B球下落,A球仍保持静止;乙图,剪断绳子B球下落,A球会向上运动.显然乙图中的A球受力不平衡.为什么会这样 呢?首先我们先画出在剪断之前两图中A的受力分析:

用剪子剪断弹簧是F2突然消失,剪断绳子是FT2突然消失,由剪断前的受力平衡条件可得出F2= FT2之所以出现差别,关键在于绳上的弹力与弹簧上的弹力不同.绳上张力大小,与外界拉它的力的大小有关,在静力问题中,拉绳子的力越大绳子上的弹力也越大;拉绳子的力越小,绳子上的弹力也越小;拉绳子的力为零,绳子上的弹力为零.方向总是指向绳的收缩方向,即绳子上的弹力可以发生突变.弹簧的弹力大小,由胡克定律可知,与它的形变量有关,形变是不能突然回复的,即弹簧上的弹力不能发生突变.所FT1在剪断弹簧后变为FT1’=GA,而乙图中的F1却不能发生突变.