返回首页

复合弓没减震使用会怎样?

249 2023-07-28 02:29 admin

一、复合弓没减震使用会怎样?

很有用,但是也不是没有就不行。

1,吸收余震。一箭射出去,整个弓会像吉他的共鸣箱一样嗡嗡震动(夸张了一下),减震器可以吸收掉多余的震动,使弓迅速平静下来,减少了噪音和震手的感觉,提升体验。

2,配重。复合弓的推把在中心以下,上半部分还有瞄准具,所以上重下轻。下面拧个减震,使得整把弓没有歪斜和倾覆的趋势。射准复合的理想状态是,左手端起弓,弓身自然保持上下正直,不需要手去给他偏转力矩。猎弓没必要装那么重的配重,但是适当的配重也是对体验和精度有好处的。

3,提升精度。撒放后,弓弦在绷着箭往前走的时候,弓把会不由自主的抖动和摆动,向前延长的减震器可以吸收掉一部分弓把的晃动,让弓身尽量稳定,提高精度。

4,美观

二、门弓松紧怎么调整?

门弓指门扇上的金属配件,用于连接门扇和门框。为了确保门扇的平衡和顺畅的开闭,门弓的松紧度需要进行调整。具体操作如下:

1.打开门扇,找到门弓底部的螺丝。

2.使用扳手或扭力扳手,逆时针旋转螺丝,松开门弓。

3.如果门扇过紧,需要松弛门弓;如果门扇过松,则需要紧绷门弓。

4.调整完成后,再次试着打开和关闭门,检查门扇的顺畅程度和稳定性,确认门弓已经调整到合适的松紧度。

门弓的调整需要谨慎操作,以免调整过度或者调整不当导致门扇变形或者损坏。如果不熟悉操作请专业人员进行调整。

三、拉伸弹簧和扭转弹簧有什么区别?

拉伸弹簧(也叫拉力弹簧,简称拉簧)是承受轴向拉力的螺旋弹簧,拉伸弹簧一般都用圆截面材料制造。在不承受负荷时,拉伸弹簧的圈与圈之间一般都是并紧的没有间隙。

各圈紧密围绕,以使其能受力而拉长,各端绕一环圈(Loop)。

下述为一拉伸弹簧之必要资料:

(1)自由长度:(a)总长度、(b)全部圈长、(c)自钩圈内之长度。

(2) 控制直径:(a)外径、(b)内径、(c)所套管之内径。

(3) 钢丝尺寸“线径”。

(4) 材料(种类、等级)。

(5) 圈数:(a)总圈数及(b)右旋或左旋。

(6) 末端之形式。

(7) 钩内之负荷。

(8) 负荷率、挠曲度、每寸磅数。

(9) 最大拉伸长度。

扭力弹簧是一种机械蓄力结构,主要用于古代弩炮和其他弩类。 扭力弹簧通过对材质柔软、韧度较大的弹性材料的扭曲或旋转进行蓄力,利用,使被发射物具有一定的机械能。

扭力弹簧(Torsion Spring)乃变体弹簧之极至,由单扭簧至双扭簧异形扭簧,乃至各种扭杆之变形,得依设计成型。

扭簧(Torsion Spring)为所有弹簧类别中设计原理较为复杂的一种,型式的变化亦相当活泼,故设计时所涉及的理论也最为繁琐。因此设计时亦较难掌握

扭簧之必要资料:

(1) 自由长度。

(2) 控制直径:(a)外径、(b)内径、(c)所套管之内径,或(d)所穿越圆杆春弯渗之外径。

(3) 钢丝尺寸“线径”。

(4) 材料(种类及等级)。

(5) 扭转力:偏转至某一角度之磅数。

(6) 最大挠度(自由位置算起之角度)。

(7) 末端之形式。

请注明:材闹谨料直径(d),外径(D),扭臂长(L),自由高度(Lo),以及其它几何扒脊尺寸,如导矩(T 1 T 2…… T j )和对应和对应扭转角度(Ψ )

一根弹簧,当受到一个沿轴向的力的拉力作用时,它就是一个“拉伸埋丛弹簧”,在沿轴向的力的作用下产生一个同样沿轴向的反向的弹力。当哪液灶这个弹簧受到一个绕轴的力矩作用时,它成为一个“扭转弹李扮簧”。

当然,为了方便施加拉力或扭力,弹簧两端可以做成更适合的形状。

拉伸弹簧(拉簧)是承受轴向拉力的螺旋弹簧,拉伸弹簧一般都用圆截面材料制造。在不承受负荷时,拉伸弹簧的圈与圈之间一般都是并紧的没有间隙。利用拉伸后的回滑团弹力(拉力)工作,用以控制机件的运动、贮蓄能量、测量力的大小等,广泛用于机器、仪表中。其钩的形式有侧钩拉簧,长钩拉簧,英式钩拉簧,德式钩拉簧,半信世橘圆钩拉簧,鸭嘴钩拉簧等等,其材料有不锈钢、琴钢、高碳钢、磷铜、油回火合金弹簧钢等。

扭力弹簧(扭簧)利用杠杆原理,通过对材质柔软、韧度较大的弹性材料的扭曲或旋转,使之具有极大的机械能。是承受扭转变形的弹簧,它的工作部返颂分也是各圈或是紧密围绕或是分开围绕。扭转弹簧的端部结构是加工成各种形状的扭臂,由单扭至双扭,乃至各种扭杆之变形,得依设计成型。扭转弹簧常用于机械中的平衡机构,在汽车、机床、电器等工业生产中广泛应用。

拉伸段早弹簧的弹力是跟弹簧的拉伸量成正比的,弹力方向和拉伸方向相反。搜族扭转弹簧的弹力和弹世燃弊簧的扭转角度成正比,弹力的方向和弹簧扭转的切线方向一致。

四、某同学在制作弹簧测力计时,找来了多种不同类型的弹簧

[编辑本段]弹簧

弹簧是一种利用弹性来工作的机械零件。一般用弹簧钢制成。用以控制机件的运动、缓和冲击或震动、贮蓄能量、测量力的大小等,广泛用于机器、仪表中。按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧等。

[编辑本段]其主要功能

①控制机械的运动,如内燃机中的阀门弹簧、离合器中的控制弹簧等。②吸收振动和冲击能量,如汽车、火车车厢下的缓冲弹簧、联轴器中的吸振弹簧等。③储存及输源念乎出能量作为动力,如钟表弹簧、枪械中的弹簧等。④用作测力元件,如测力器、弹簧秤中的弹簧等。弹簧的载荷与变形之比称为弹簧刚度,刚度越大,则弹簧越硬。

按受力性质,弹簧可分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧,按形状可分为碟形弹簧、环形弹簧、板弹簧、螺旋弹簧、截锥涡卷弹簧以及扭杆弹簧等。普通圆柱弹簧由于制造简单,且可根据受载情况制成各种型式,结构简单,故应用最广。弹簧的制造材料一般来说应具有高的弹性极限、疲劳极限、冲击韧性及良好的热处理性能等,常用的有碳素弹簧钢、合金弹簧钢、不锈弹簧钢以及铜合金、镍合金和橡胶等。弹簧的制造方法有冷卷法和热卷法。弹簧丝直径小于8毫米的一般用冷卷法,大于8毫米的用热卷法。有些弹簧在制成后还要进行强压或喷丸处理,可提高弹簧的承载能力。

弹簧是机械和电子行业中广泛使用的一种弹性元件,弹簧在受载时能产生较大的弹性变形,把机械功或动能转化为变形能,而卸载后弹簧的变形消失并回复原状,将变形能转化为机械功或动能。

[编辑本段]弹簧的类

按受力性质,弹簧可分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧;按形状可分为碟形弹簧、环形弹簧、板弹簧、螺旋弹簧、截锥涡卷弹簧以及扭杆弹簧等。普通圆柱弹簧由于制造简单,且可根据受载情况制成各种型式,结构简单,故应用最广。弹簧的制造材料一般来说应具有高的弹性极限、疲劳极限、冲击韧性及良好的热处理性能等,常用的有碳素弹簧钢、合金弹簧钢、不锈弹簧钢以及铜合金、镍合金和橡胶等。弹簧的制造方法有冷卷法和热卷法。弹簧丝直径小于8毫米的一般用冷卷法,大于8毫米的用热卷法。有些弹簧在制成后还要进行强压或喷丸处理,可提高弹簧的承载能力。

什么是螺旋弹簧?

螺旋弹簧即扭转弹簧,是承受扭转变形的弹簧,它的工作部分也是密绕成螺旋形。扭转弹簧的端部结构是加工成各种形状的扭臂,而不是勾环。扭转弹簧常用于机械中的平衡机构,在汽车、机床、电器等工业生产中广泛应用。

什么是拉伸弹簧?

拉伸弹簧是承受轴向拉力的螺旋弹簧,拉伸弹簧一般都用圆截面材料制造。在不承受负荷时,拉伸弹簧的圈与圈之间一般都是并紧的没有间隙。

什么是压缩弹簧?

压缩弹簧是承受向压力的螺旋弹簧,它所用的材料截面多为圆形,也有用矩形和多股钢萦卷制的,弹簧一般为等节距的,压缩弹簧的形状有:圆柱形、圆锥形、中凸形和中凹形以及少量的非圆形等,压缩弹簧的圈与圈之间有一定的间隙,当受到外载荷时弹簧收缩变形,储存变形能。

什么是扭力弹簧? 扭力弹簧利用杠杆原理,通过对材质柔软、韧度较大的弹性材料的扭曲或旋转,使之具有极大的机械能。

[编辑本段]弹簧各部分名称:

(1)弹簧丝直径d:制造弹簧的钢丝直径。

(2)弹簧外径D:弹簧的最大外径。

(3)弹簧内径D1:弹簧的最小外径。

(4)弹簧中径D2:弹簧的平均直径。它们的计算公式为:D2=(D+D1)÷2=D1+d=D-d

(5)t:除支撑圈外,弹簧相邻两圈对应点在中径上的轴向距离成为节距,用t表示。

(6)有效圈数n:弹簧能保持相同节距的圈数。

(7)支撑圈数雹悉n2:为了使弹簧在工作时受力均匀,保证轴线垂直端面、制造时,常将弹簧两端并紧。并紧的圈数仅起支撑作用,称为支撑圈。一般有1.5T、2T、2.5T,常用的是2T。

(8)总圈数n1: 有效圈数与支撑圈的和。即n1=n+n2.

(9)自由高H0:弹簧在未受外力作用下的高度。由下式计算:H0=nt+(n2-0.5)d=nt+1.5d (n2=2时)

(10)弹簧展开长度L:绕制弹簧时所需钢丝的长度。L≈n1 (ЛD2)2+n2 (压高猛簧) L=ЛD2 n+钩部展开长度(拉簧)

(11)螺旋方向:有左右旋之分,常用右旋,图纸没注明的一般用右旋。

(12) 弹簧旋绕比;中径D与 钢丝直径d之比

[编辑本段]弹簧的规定画法

(1)在平行螺旋弹簧线的视图上,各圈的轮廓线画成直线。

(2)有效圈数在4圈以上的弹簧,可只画出其两端1~2圈(不含支撑圈)。中间用通过弹簧钢丝中心的点画线连起来。

(3)在图样上,当弹簧的旋向不作规定时,螺旋弹簧一律画成右旋,左旋弹簧也画成右旋,但要注明“左”字。

[编辑本段]弹簧的应用

大多数材料都有不同程度的弹性,如果将其弯曲,便会以很大的力量恢复其原形。在人类历史上,一定很早就注意到树苗和幼树的树枝有很大的挠性,因为许多原始文化利用这一特性,在特制的门后或笼子后楔上一根棍,或者用活结套在一根杆上向下拉;一旦松开张力,这根棍或杆就会往回弹。他们就用这种办法来捕捉飞禽走兽。实际上,弓就是按这种方式利用幼树弹性的弹簧;先向后拉弓,然后撒手,让其回弹。中世纪时,这种想法开始出现在机械上,如纺织机、车床、钻机、磨面机和锯。操作者用手或脚踏板给出下压冲程,将工作机械往下拉,这时用绳索固定在机械上的一根杆弹回,产生往复运动。

弹性材料的抗扭性不压于它的抗挠性。希腊帝国时期 (大概是公元前4世纪)发明了用搓成的腱绳或毛绳拉紧的扭簧,用以代替简单的弹簧来加强石弩和抛石机的威力。这时人们开始认识到,金属比木头、角质或任何这类有机物质的弹性更大。菲洛 (其写作年代约为公元前200年)把它作为一项新发现来进行介绍。他估计读者是难以置信的。凯尔特人和西班牙人的剑的弹性,引起了他的亚历山大城的前辈的注意。为了弄清楚剑为什么有弹性,他们进行了许多实验。结果他的师傅克特西比发明了抛石机,抛石机的弹簧是用弯曲的青铜板作成的——实际上是最早的片簧;菲洛本人又进一步改进了这些抛石机。富有创造性的克特西比在发明这种抛石机后,又想出了另一种抛石机—一它利用汽缸内空气在受压的情况下产生的弹性工作。

在很久以后人们才想到:如果压缩一根螺旋杆,而不是弯曲一根直杆,那么金属弹簧储存的能量就会更大。据伯鲁涅列斯基的小传记载,他制作过一口闹钟,其中使用了若干代弹簧。最近有人指出,在附有一些奇特的螺旋弹簧钟表图的15世纪末叶的一本机械手册中有这架闹钟的图样。这类弹簧也用于现代的捕鼠器。带圈簧 (水平压缩而不是垂直压缩的弹簧)的钟表,在1460年左右肯定已开始使用了,但基本上是皇室的奢侈品,大约又过了1个世纪,带弹簧的钟表才成为中产阶级人士的标志。

控制流动方向的阀门

由于阀门只让水或其他流体(如空气)沿一个方向流动,几乎可以肯定地说,它最先是作为需要这种运动的早期工具——风箱的一个部件出现的。阿格里科拉在研究文艺复兴时期的冶金学的文章中说,锻铁炉风箱有一个比风眼稍长和稍宽的薄板,“薄板上覆盖着山羊皮,是用皮带捆在板上的,毛边一侧冲地面”。放置的方式是:当风箱鼓起来时,薄板打开;当风箱收缩时,薄板关闭。”瓣阀肯定远比阿格里科拉的时代为早,同楔形板风箱一样古老。但它问世的具体年代却很难确定,因为瓣阀这个术语来自古老的皮袋型风箱 (在这种风箱中,操作的人可以用脚或手将风眼堵住)。显然,最早的模型大约是希腊王朝时代的青铜灯,但在罗马后期的诗人奥素尼乌斯之前还没有人提到过青铜灯的阀门。奥索尼乌斯把陆上快咽气的鱼的鳃。比作在掬木腔内往复运动时通过孔眼交替进风和挡风的羊毛阀。

可以说,机械上使用阀门的历史起始于克特西比的压力泵。维脱劳维斯和赫罗对压力泵作了详细的说明,他们说:“灵巧地安在管道口内的环形薄片,不会让压入容器的东西再往回跑。”看来克特西比压力泵的原始瓣阀呈长筒形,那时已用来搞屋顶通风。后来改用矩形阀,但名称仍保持不变。已经修复了几台罗马压力泵,其阀门已严重腐蚀,但还是可以辨认出来。赫伦在讲到用双气缸压力泵作灭火器时,还介绍了一种原始的跳动活门,一些在三根弯柱上滑上滑下的小圆盘。克特西比的水力机件有用来控制空气进入管道的滑阀。除此以外,在文艺复兴时期前,所有的泵和风箱阀都是瓣阀 (或铰形阀)。

达·芬奇发明的一种锥形跳动舌门,无疑是拉梅利的机械发明手册

(1588)中所画的那些舌门的来源。跟拉梅利同时代的阿勒奥蒂,在自动木偶戏中采用了一种蝴蝶阀来控制管道内的水流。但是,从赫伦的时代直到发明蒸汽机,这些跳动舌门没有一种得到广泛应用,各种阀门也没有什么变化。蒸汽机(需要对流入和流出顺序进行更精确的控制)导致了跟发动机的运转有关的精密阀门的出现,这些阀门包括纽科门设计的释放积蓄在气缸中的空气的“喷气阀”、默多克的滑阀(1799)和使双动发动机的活塞保持平衡的平衡阀。

空气泵

德国马德堡市市长盖里克对科学家和哲学家关于形成真空的可能性的争论很感兴趣。作为一个受过专门教育的工程师,他决定通过实验来解决这个问题。公元1650年,他制造出了第一台空气泵——像一台手工操作的水泵,但有制造精密的零件,不透气。这台空气泵是成功的。他指出,在一个抽尽了空气的容器内,听不到钟响,蜡烛不燃烧,动物也会闷死。

他的大规模的演示是十分壮观的。有一次实验是当着皇帝斐迪南三世的面在其宫廷前面的空旷处进行的。在这个实验中,在直径12英尺的两个半球的周边凸缘上涂上润滑脂,将两个半球的凸缘嵌合,然后将球内空气抽尽。将8匹马分成两组拉拴在每个半球上的钢索也未能将其分开,可是放进空气后,它们就分开了。在公元1654年的另一次实验,是将一个立式开口圆筒活塞下面抽成真空,用50人拉拴在活塞上的绳子,他们反而被活塞拉动了。人们就是用这种方法来使活塞做功的;活塞的下面必须始终有一个真空。

但是,没有空气泵能形成真空吗?经过许多年之后,人们发现用蒸汽可以解决这个问题。公元1698年,托马斯·萨弗里第一个利用蒸汽排水,使蒸汽通入密闭容器,然后在容器上喷冷水,使其中的蒸汽冷凝,从而产生真空。他利用这种真空从矿井抽水,又利用锅炉蒸汽将容器中的水排空。这个循环过程反复进行。

萨弗里的设备被称为“矿工之友”。它没有任何活塞或活动零件,也不是一台发动机,而只是一台泵而已。

在此以前的1690年,法国的丹尼斯·帕平已经制造出了一个模型设备,一个直径2.5英寸的活塞刚好能放进汽缸里。在汽缸内盛少量的水,他就能够通过连续地将水加热和冷却的办法,证明汽缸冷却时在活塞下面形成真空。虽然这种设备没有得到实际应用,但却是第一台利用冷凝蒸汽推动活塞和做功的设备。

公元 1712年,将居里克、帕平和萨弗里的上述3项成就结合在一起,达特默思的托马斯·纽科门制成了一台实用的蒸汽机。

胡克发明了万向节

公元1676年,被誉为“英国的达·芬奇”的罗伯特·胡克发表了他关于

“太阳镜”的演说。这是一台采用反射镜系统安全地观测太阳的仪器。这台仪器是用他新奇的万向节进行操纵的。万向节是一种万能仪器……用来通过任何不规则的弯曲轨道产生环形运动。虽然胡克比较详细地讲过这种新仪器的制造方法,并且含糊地指出,这种仪器可能在各方面获得应用,但他自己只想用它来进行天文观测,或用在时钟和日规的设计中,故在当时没有引起多少人注意。

胡克是个才华横溢的人,他在系统提出物理学、化学和地质学方面的革命性理论之余,在伦敦咖啡馆内同思想相近的朋友们无休止地讨论之余,抽空儿搞了二十几项发明。他的日记通常略为提及某些新设想是如何在他的高度活跃的头脑中逐步酝酿成形的。英国皇家学会会议记录,记载了那些使他最新的发现得以驰名的实验。

但是,日记并没有讲他在万向节上花费了许多时间;他也不曾想学会演示万向节。就这种机器而言,发明完全属于他个人看来是勿容置疑的。但是,在动力传输方面,在19世纪的运输革命之前,和许多其他的发明一样,并不需要一个具有向各个方向传动的自由接头。

瓦拉发明了调速器

瓦特在1789年发明的蒸汽机中使用的离心调速器,在当时引起的轰动不是太大;瓦特重视动力系统,只把调速器看成是蒸汽机上的一个附件。然而它是第一台通过改变燃料输入量而有效地控制速度的装置,是使一台机器能进行自动调节的一切反馈装置的鼻祖,在发明史上的地位已确定无疑。瓦特的调速器是由一对离心摆组成,最远处与蒸汽机的旋转飞轮相连,直接连在一个套筒上,套筒又与汽缸的进汽阀连接。当飞轮转动较快时,两个球体就向外摆动,使套筒下降;当速度减慢时,球体就随之下垂,迫使套筒上升。汽阀可开大开小,以维持均匀的速度。

瓦特调速器的历史,也许可追溯到中世纪和文艺复兴时期机器上有时用来代替飞轮的球—链装置或球—杆装置。然而这些装置只发挥飞轮的功能,通过贮存能量、使钻床或曲柄产生较有规律的运动来带动工具越过“死点”;它们不能控制速度或功率输入,最多只是对调速器的造型有所启发。直到力学发展了,人们知道了钟摆的性能,懂得了离心力后,才有人想到利用球—杆组合装置来进行控制。

磨坊工人经常碰到的一个问题是无法利用强风力。因为当轴旋转很快时,磨石容易向上移动,扩大两块磨石之间的距离,以至夹在两块磨石当中的谷粒不能完全磨碎。人们靠手将两块磨石拉紧,使它们之间保持适当的距离。直到1787年,托马斯·米德才想出一种方法,将两个摆分开挂在驱动磨石的正齿轮上,通过链条和万向节提升和调节拉杆。另一对摆与风车翼板相连,这样就使后者随速度的变化而张合。磨坊工人只要改变翼板承受的风力,就能调节旋转轴的速度。两年后,斯蒂芬·胡珀用齿条和扇形齿轮代替链条,设计了一台可以同它匹敌的机器,取得了专利权。

质量..

弹性系数

找几扮森种材料厅猛亩不相同的弹簧安在不同的弹簧秤里,最后用相同重量的东西挂在弹簧秤上。知档

我是初一的..不知道对不对,希望能帮上你!

弹簧的长度,直径都会影响伸长的长度

长度,粗细

器材:两个不同材料的弹簧,重物(可以用砝码),量尺,细线

实验步骤:

1.测量两个弹簧未受力下的长度L1,L2

2.分别将重物系在两个弹簧下,提起弹簧,测量此时弹簧的长度L1',L2'

3.同一重物,不同弹簧,系上重物后伸长的长度各为L1-L1',L2-L2'

不相等.

实验中也可以多用几个弹簧,更能证明弹桐宽簧的材饥拆料会影响弹簧伸长的长度

会,材料不同,弹簧的弹性系数k就不同,因此受同样的力,伸长量局肢亮就不同了

+分哦