返回首页

力学原理?

135 2024-09-28 12:18 螺丝之家

一、力学原理?

浮力定律:流体静力学的一个重要原理,它指出,浸入静止流体中的物体受到一个浮力,其大小等于该物体所排开的流体重量,方向垂直向上并通过所排开流体的形心。这结论是阿基米德首先提出的,故称阿基米德原理。结论对部分浸入液体中的物体同样是正确的。同一结论还可以推广到气体。

力矩平衡原理:力矩可以使物体向不同的方向转动。如果这两个力矩的大小相等,杠杆将保持平衡。这是我们在初中学过的杠杆平衡条件,是力矩平衡的最简单的情形。如果把把物体向逆时针方向转动的力矩规定为正力矩,使物体向顺时针方向转动的力矩规定为负力矩,则有固定转动轴的物体的平衡条件是力矩的代数和为零。

杠杆原理:杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。

胡克定理:

胡克定律:在弹性极限内,弹性物体的应力与应变成正比(中学物理中解释为受力伸长量与所受外力成正比

胡克定律的内容是:在弹性限度内,弹簧所受的拉力与形变量成正比。F=k△x,其中k为劲度系数,△x为形变量,F为所受的拉力。给出一个弹簧,k是固定不变的。如果一个弹簧在自然状态下(不受外力)的长度是10厘米,现在用5牛的拉力拉弹簧,弹簧伸长5厘米,求劲度系数k。则用k=F/△x,其中F的单位是牛,△x的单位是米。则k=F/△x=5N/0.05m=100N/m胡克证明了弹簧震动是等时的,还把弹簧应用于钟表制造。在物理学中主要用于研究与弹簧有关的问题。测力计(有时叫弹簧秤): 利用金属的弹性体制成标有刻度用以测量力的大小的仪器,谓之“测力计”。测力计有各种不同的构造形式,但它们的主要部分都是弯曲有弹性的钢片或螺旋形弹簧。当外力使弹性钢片或弹簧簧发生形变时,通过杠杆等传动机构带动指针转动,指针停在刻度盘上的位置,即为外力的数值。有握力计等种类,而弹簧秤则是测力计的最简单的一种。

二、帆拱的力学原理?

东西方古国,很早就产生了拱结构。如:中国的弧拱、古埃及、希腊的券拱;古罗马的半圆拱;拜占庭的帆拱;罗马建筑的肋形拱;哥特建筑的尖拱等。

现代的拱结构多采用圆弧拱或抛物线拱,其所采用的材料相当广泛,可用砖、石、混凝土、钢筋混凝土、预应力混凝土,也有采用木材和钢材的。拱结构的应用范围很广;最初用于桥梁,在建筑中,拱主要用于屋盖、或跨门窗洞口,有时也用作楼盖、承托围墙或地下沟道顶盖。

拱所承受的荷载不同,其压力曲线的线形也不相同,一般按恒载下压力曲线确 定;在活载作用下,拱内力可能产生弯矩,这时铰的设置就会影响拱内弯矩的分布状况。与刚架相仿,只有地基良好或两侧拱肢处有稳定边跨结构时才采用无铰拱,这种拱很少用于房屋建筑。双铰拱应用较多,为适应软弱地基上支座沉降差及拱拉杆变形,最好采用静定结构的三铰拱,如西安秦俑博物馆展览厅,由于地基为Ⅰ-Ⅱ级湿陷性土而采用67m跨的三铰拱。拱身可分为两大类,即梁式拱和板式拱。

三、桥的力学原理?

悬索桥的力学原理为:铆钉利用桥塔将主缆拉起来,桥梁借助吊杆悬挂至主缆上。根据不同的需求设计相应的桥梁,桥梁设计时,除要使用物理知识解决桥梁承受力以外,还要考虑自然因素产生的影响,这些研究都为我们日后学习桥梁设计相关知识打下坚实的基础。

通常情况下,索桥主要承重构件处在锚固的锁定上,少数设计者为满足特殊的需要,会把主缆直接锚固在加劲梁上,去除庞大的锚碇,形成自锚式悬索桥。

四、赵州桥的力学原理?

1、每一拱券采用了下宽上窄、略有“收分”的方法,使每个拱券向里倾斜,相互挤靠,增强其横向联系,以防止拱石向外倾倒;在桥的宽度上也采用了少量“收分”的办法,就是从桥的两端到桥顶逐渐收缩宽度,从最宽9.6米收缩到9米,以加强大桥的稳定性。

2、在主券上均匀沿桥宽方向设置了5个铁拉杆,穿过28道拱券,每个拉杆的两端有半圆形杆头露在石外,以夹住28道拱券,增强其横向联系。在4个小拱上也各有一根铁拉杆起同样作用。

3、在靠外侧的几道拱石上和两端小拱上盖有护拱石一层,以保护拱石;在护拱石的两侧设有勾石6块,勾住主拱石使其连接牢固。

4、为了使相邻拱石紧紧贴合在一起,在两侧外券相邻拱石之间都穿有起连接作用的“腰铁”,各道券之间的相邻石块也都在拱背穿有“腰铁”,把拱石连锁起来。而且每块拱石的侧面都凿有细密斜纹,以增大摩擦力,加强各券横向联系。这些措施的采取使整个大桥连成一个紧密整体,增强了整个大桥的稳定性和可靠性。

五、弓的力学原理?

弓箭,是古代以弓发射的具有锋刃的一种远射兵器。弓由弹性的弓臂和有韧性的弓弦构成;箭包括箭头、箭杆和箭羽,箭头为铜或铁制,杆为竹或木质,羽为雕或鹰的羽毛。弓箭是中国古代军队使用的重要武器之一。

当人们用力拉弦迫使弓体变形时,就把自身的能量储存进去了;松手释,弓体迅速恢复原状,同时把存进的能量猛烈地释放出来,遂将搭在弦上的箭有力地弹射出去。弹性势能可转化为动能。

六、冲浪的力学原理?

冲浪的原理:海风将能量转移至海浪,致使海浪涌动,海水的重力作用则试图让海面回复风平浪静的状态,因此水粒子开始相互挤压,产生海内部的压力,水与波浪同步运动,将能量传递。当海浪逐渐靠近冲浪板时,朝着与海浪相同的方向调转浪板,尽力滑动,赶上浪的速度,冲浪板与水形成一个角度,底部产生的压力,能使冲浪板在表面飞快行进。

七、牛顿的力学原理?

牛顿力学属于经典力学范畴,是以质点作为研究对象,着眼于力的作用关系,在处理质点系统问题时,强调分别考虑各个质点所受的力,然后来推断整个质点系统的运动状态;牛顿力学认为质量和能量各自独立存在,且各自守恒;它只适用于物体运动的惯性参照系;牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。

八、吊扇的力学原理?

吊扇工作扇叶的转动对空气有向下的压力于是空气就会对风扇有向上的支持力,使得吊扇对固定杆的拉力减小同时,电风扇快速振动时,风扇周围的空气流速大压强小,容易吸附灰尘

九、桁架的力学原理?

从力学方面分析,桁架外形与简支梁的弯矩图相似时,上下弦杆的轴力分布均匀,腹杆轴力小,用料最省;从材料与制造方面分析,木桁架做成三角形,钢桁架采用梯形或平行弦形,钢筋混凝土与预应力混凝土桁架为多边形或梯形为宜。 桁架的高度与跨度之比,通常,立体桁架为1/12~1/16,立体拱架为1/20~1/30,张拉立体拱架为1/30~1/50,在设计手册和规范中均有具体规定。桁架的使用范围很广,在选择桁架形式时应综合考虑桁架的用途、材料和支承方式、施工条件,其最佳形式的选择原则是在满足使用要求前提下,力求制造和安装所用的材料和劳动量为最小。 三角形桁架 三角形桁架在沿跨度均匀分布的节点荷载下,上下弦杆的轴力在端点处最大,向跨中逐渐减少;腹杆的轴力则相反。三角形桁架由于弦杆内力差别较大,材料消耗不够合理,多用于瓦屋面的屋架中。 梯形桁架 梯形桁架和三角形桁架相比,杆件受力情况有所改善,而且用于屋架中可以更容易满足某些工业厂房的工艺要求。如果梯形桁架的上、下弦平行就是平行弦桁架,杆件受力情况较梯形略差,但腹杆类型大为减少,多用于桥梁和栈桥中。 多边形桁架 多边形桁架也称折线形桁架。上弦节点位于二次抛物线上,如上弦呈拱形可减少节间荷载产生的弯矩,但制造较为复杂。在均布荷载作用下,桁架外形和简支梁的弯矩图形相似,因而上下弦轴力分布均匀,腹杆轴力较小,用料最省,是工程中常用的一种桁架形式。 空腹桁架 空腹桁架基本取用多边形桁架的外形,无斜腹杆,仅以竖腹杆和上下弦相连接。杆件的轴力分布和多边形桁架相似,但在不对称荷载作用下杆端弯矩值变化较大。优点是在节点相交会的杆件较少,施工制造方便。 桁架桥 1、桁架桥是桥梁的一种形式。  2、桁架桥一般多见于铁路和高速公路;分为上弦受力和下弦受力两种。  3、桁架由上弦、下弦、腹杆组成;腹杆的形式又分为斜腹杆、直腹杆;由于杆件本身长细比较大,虽然杆件之间的连接可能是“固接”,但是实际杆端弯矩一般都很小,因此,设计分析时可以简化为“铰接”。简化计算时,杆件都是“二力杆”,承受压力或者拉力。  4、由于桥梁跨度都较大,而单榀的桁架“平面外”的刚度比较弱,因此,“平面外”需要设置支撑。设计桥梁时,“平面外”一般也是设计成桁架形式,这样,桥梁就形成双向都有很好刚度的整体。  5、有些桥梁桥面设置在上弦,因此力主要通过上弦传递;也有的桥面设置在下弦,由于平面外刚度的要求,上弦之间仍需要连接以减少上弦平面外计算长度。  6、桁架的弦杆在跨中部分受力比较大,向支座方向逐步减小;而腹杆的受力主要在支座附件最大,在跨中部分腹杆的受力比较小,甚至有理论上的“零杆”。

十、天平的力学原理?

天平是根据杠杆平衡原理制成的,它的横梁是等臂杠杆.当两个盘中物体质量相同时,天平就会平衡.正确称量的读数为:m物=m砝+m刻.(m刻为标尺上游码指示的刻度)